miércoles, 17 de septiembre de 2014

videos

http://www.youtube.com/watch?v=g1ARHh5UFN0

http://www.youtube.com/watch?v=A8y2eUeIJP8

http://www.youtube.com/watch?v=8G7H3PGLcH0

http://www.youtube.com/watch?v=3kaOBxaBF-E

http://www.youtube.com/watch?v=WzXIJSr8EjM

evaluacion y fechas

Prueba 1 sobre reactividad quimica y métodos de obtencion de los compuestos carbonilados: aldehídos y cetonas15 %25 de septiembre
Prueba 2 sobre reactividad quimica y métodos de obtencion de los ácidos carboxilicos y la reactividad de los derivados de ácidos carboxilicos15 %
Prueba 3 sobre conceptos básicos de la bioquímica: Biocompuestos: Glucidos, lipidos, protidos, enzimas y acidos nucleicos.15 %
Prueba 4. Rutas metabólicas: Metabolismo de biocompuestos15 %
Blogger de quimica: Desarrollo conceptual y aplicativo en forma virtual.30 %
Actividades Experimentales sobre biocompuetsos.

competencias

USO COMPRENSIVO DEL CONOCIMIENTO CIENTÍFICO

Reconoce y aplica conceptos básicos, relacionados con el estudio de las propiedades químicas y métodos de obtencion en el laboratorio de los compuestos carbonilados, carboxilados y sus derivados: Anhídridos, esteres y Haluros de ácidos

EXPLICACIÓN DE FENÓMENOS

Identifica las características, composición, reglas y constitución de los compuestos que hacen parte de de la bioquímica.interpretando situaciones referentes a los compuestos orgánicos, teniendo como base el comportamiento y las aplicaciones de los carbohidratos, lípidos, proteínas, enzimas y ácidos nucleicos

INDAGACIÓN

Establecer relaciones de aplicabilidad entre la bioquímica y la vida cotidiana      

metabolismo en biocompuestos

En bioquímica se denomina metabolismo secundario a aquél conjunto de reacciones bioquímicas que se producen de forma paralela al metabolismo primario vertebrador de la biología celular. Los metabolitos secundarios son aquellos compuestos orgánicos sintetizados por el organismo que no tienen un rol directo en el crecimiento o reproducción del mismo sino que cumplen funciones complementarias a las vitales, tales como comunicación intra e interespecífica, defensa contra radiación, congelación, y ataque de depredadores, patógenos o parásitos. A estos compuestos se les denomina metabolitos secundarios.1


Las biomoléculas que son constituyentes fundamentales en procesos vitales de los seres vivos son denominados metabolitos primarios. Estos metabolitos tienen distribución taxonómica amplia. Se puede considerar que los metabolitos primarios por excelencia son la glucosa, la ribosa, la fructosa, el ácido pirúvico, el gliceraldehído, el ácido acético (Esterificado como acetil coenzima A), el ácido oxaloacético, el ácido málico, el ácido 2-oxoglutárico, el ácido palmítico, el ácido esteárico, el ácido oleico, el porfibilinógeno, el pirofosfato de isopentenilo, los 20 aminoácidos proteínicos, las bases púricas, las bases pirimidínicas y las Vitaminas del grupo B. A diferencia de lo que sucede con los metabolitos primarios, la ausencia de algún metabolito secundario no le impide la supervivencia, si bien se verá afectado por ella, a veces gravemente. Si bien las rutas metabólicas básicas (el ciclo de Krebs, por ejemplo) están muy conservadas entre especies, el metabolismo secundario, pese a que es también vital para la supervivencia del organismo, muestra una variación mayor.

biomoleculas

Las biomoléculas son las moléculas constituyentes de los seres vivos. Los seis elementos químicos o bioelementos más abundantes en los seres vivos son el carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre (C,H,O,N,P,S) representando alrededor del 99 % de la masa de la mayoría de las células, con ellos se crean todo tipos de sustancias o biomoléculas (proteínas, aminoácidos, neurotransmisores).

Glúcidos
Los glúcidos (impropiamente llamados hidratos de carbono o carbohidratos) son la fuente de energía primaria que utilizan los seres vivos para realizar sus funciones vitales; la glucosa está al principio de una de las rutas metabólicas productoras de energía más antigua, la glucólisis, usada en todos los niveles evolutivos, desde las bacterias a los vertebrados. Muchos organismos, especialmente los vegetales (algas, plantas) almacenan sus reservas en forma de almidón, en cambio los animales forman el glucógeno, entre ellos se diferencia por la cantidad y el número de ramificaciones de la glucosa. Algunos glúcidos forman importantes estructuras esqueléticas, como la celulosa, constituyente de la pared celular vegetal, o la quitina, que forma la cutícula de los artrópodos.

Lípidos
Los lípidos saponificables cumplen dos funciones primordiales para las células; por una parte, los fosfolípidos forman el esqueleto de las membranas celulares (bicapa lipídica); por otra, los triglicéridos son el principal almacén de energía de los animales. Los lípidos insaponificables, como los isoprenoides y los esteroides, desempeñan funciones reguladoras (colesterol, hormonas sexuales, prostaglandinas).

Proteínas
Las proteínas son las biomoléculas que más diversidad de funciones realizan en los seres vivos; prácticamente todos los procesos biológicos dependen de su presencia y/o actividad. Son proteínas casi todas las enzimas, catalizadores de reacciones metabólicas de las células; muchas hormonas, reguladores de actividades celulares; la hemoglobina y otras moléculas con funciones de transporte en la sangre; anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños; los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada; la actina y la miosina, responsables finales del acortamiento del músculo durante el estado de la contracción; el colágeno, integrante de fibras altamente resistentes en tejidos de sostén de la planta y el tallo
Acidos nucleicos
Los ácidos nucleicos, ADN y ARN, desempeñan, tal vez, la función más importante para la vida: contener, de manera codificada, las instrucciones necesarias para el desarrollo y funcionamiento de la célula. El ADN tiene la capacidad de replicarse, transmitiendo así dichas instrucciones a las células hijas que heredarán la información.

Algunas, como ciertos metabolitos (ácido pirúvico, ácido láctico, ácido cítrico, etcétera.) no encajan en ninguna de las anteriores categorías citadas.

bioquimica estructural y quimica bioorganca

Bioquímica estructural: es un área de la bioquímica que pretende comprender la arquitectura química de las macromoléculas biológicas, especialmente de las proteínas y de los ácidos nucleicos (DNA y RNA). Así se intenta conocer las secuencias peptídicas, su estructura y conformación tridimensional, y las interacciones físico-químicas atómicas que posibilitan a dichas estructuras. Uno de sus máximos retos es determinar la estructura de una proteína conociendo sólo la secuencia de aminoácidos, que supondría la base esencial para el diseño racional de proteínas (ingeniería de proteínas).  
Química bioorgánica: es un área de la química que se encarga del estudio de los compuestos orgánicos (es decir, aquellos que tienen enlaces covalentes carbono-carbono o carbono-hidrógeno) que provienen específicamente de seres vivos. Se trata de una ciencia íntimamente relacionada con la bioquímica clásica, ya que en la mayoría de los compuestos biológicos participa el carbono. Mientras que la bioquímica clásica ayuda a comprender los procesos biológicos con base en conocimientos de estructura, enlace químico, interacciones moleculares y reactividad de las moléculas orgánicas, la química bioorgánica intenta integrar los conocimientos de síntesis orgánica, mecanismos de reacción, análisis estructural y métodos analíticos con las reacciones metabólicas primarias y secundarias, la biosíntesis, el reconocimiento celular y la diversidad química de los organismos vivos. De allí surge la Química de Productos Naturales (V. Metabolismo secundario).

bioquimica

La bioquímica es una ciencia que estudia la composición química de los seres vivos, especialmente las proteínas, carbohidratos, lípidos y ácidos nucleicos, además de otras pequeñas moléculas presentes en las células y las reacciones químicas que sufren estos compuestos (metabolismo) que les permiten obtener energía (catabolismo) y generar biomoléculas propias (anabolismo). La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre.

Es la ciencia que estudia la base química de las moléculas que componen las células y los tejidos, que catalizan las reacciones químicas del metabolismo celular como la digestión, la fotosíntesis y la inmunidad, entre otras muchas cosas.


Podemos entender la bioquímica como una disciplina científica integradora que aborda el estudio de las biomoléculas y biosistemas. Integra de esta forma las leyes químico-físicas y la evolución biológica que afectan a los biosistemas y a sus componentes. Lo hace desde un punto de vista molecular y trata de entender y aplicar su conocimiento a amplios sectores de la Medicina (terapia genética y Biomedicina), la agroalimentación, la farmacología.

reacciones de acidos carboxilicos

Acidez
La propiedad más característica de los ácidos carboxílicos es la acidez del hidrógeno situado sobre el grupo hidroxilo.  El pKa de este hidrógeno oscila entre 4 y 5 dependiendo de la longitud de la cadena carbonada.

Oxidación de alquilbencenos: Los ácidos carboxílicos pueden obtenerse a partir de bencenos sustituidos con grupos alquilo por oxidación con permanganato de potasio o dicromato de sodio.
Los haluros de alcanoilo se obtienen por reacción de ácidos carboxílicos con PBr3 . También se puede emplear SOCl2 .
Así, el ácido etanoico  se transforma en bromuro de etanoilo  por reacción con tribromuro de fósforo. El ácido etanoico por reacción con cloruro de tionilo forma el compuesto
Síntesis de anhídridos
Los anhidridos se obtienen por condensación de ácidos carboxílicos con pérdida de agua.  La reacción requiere fuerte calefacción y tiempo de reacción largo.
Halogenacion en el carbono alfa
Los acidos reaccionan con halógenos en presencia de fosforo produciendo la sustitución del hidrogeno alfa por un atomo de halogeno
Sustitución aromtica
Presentan una sustitución en la posición meta
Formación de amidas
Al reaccionar con amoniaco producen sales de amonio las cuales finalmente por deshidratación se convierten en amidas


reacciones de aldehidos y cetonas

Las reacciones de los aldehídos y cetonas son esencialmente de tres tipos; adición nucleofílica, oxidación y reducción.

Adición nucleofílica: Debido a la resonancia del grupo carbonilo la reacción más importante de aldehídos y cetonas es la reacción de adición nucleofílica cuyo mecanismo es el siguiente:

Siguen este esquema la reacción con hidruros ( NaBH4, LiAlH4 ) donde Nu- = H- y la reacción con organometálicos (RMgLi, RLi) donde Nu- = R-.

Adición nucleofílica de alcoholes.
Adición de amina primaria.
Adición de Hidroxilamina.
Adición de hidracinas.
Adición de Ácido Cianhídrico.
Ejemplos de reacciones de cetonas son la reacción de Grignard, la reacción de Reformatski, Transposición de Baker-Venkataraman.

Las cetonas se pueden oxidar para formar ésteres en la Oxidación de Baeyer-Villiger.


Las cetonas que poseen hidrógenos en posición α al grupo carbonilo dan también reacciones de condensación mediante un mecanismo en el que una base fuerte sustrae un hidrógeno α de la cetona generando un enolato, el cual (en su forma carbaniónica) actúa como nucleófilo sobre el grupo carbonilo de otra molécula de la misma cetona o de otro compuesto carbonílico (otra cetona, aldehído, éster, etcétera). Luego de la adición nucleofílica del carbanión al grupo carbonilo se genera un aldol mediante la acidificación del medio, el cual puede deshidratarse por calentamiento de la mezcla de reacción, obteniéndose un compuesto carbonílico α,ß-insaturado. Cabe aclarar que no siempre es necesaria la acidificación del medio de reacción y que en muchas reacciones de condensación se obtiene el producto deshidratado de manera espontánea (esto depende de la estabilidad relativa de los posibles productos de la condensación).


El carbonilo de las cetonas puede reaccionar con alquenos en cicloadiciones [2 + 2] para formar oxetanos (Reacción de Paterno-Büchi)

metodos de obtencion de cetonas

Reacciones de adición

Adición de Hidrógeno:

Al igual que los aldehídos, las cetonas pueden adicionar átomos de hidrógeno en presencia de catalizadores.
Oxidación: Los aldehídos se oxidan con facilidad. En presencia de un oxidante fuerte y calor, se rompe la cadena a la altura del grupo funcional y se forman dos moléculas de ácido.
Reacciones de sustitución:

Con halógenos dan reacciones de sustitución: La Halogenación puede continuar hasta llegar al tricloro-1,1,1-propanona.

Las cetonas como los aldehídos presentan un fenómeno que se denomina tautomería. Básicamente es una transformación intramolecular que experimentan solo algunas sustancias. En este caso se llama tautomería cetoenólica.

Condensación: Al igual que los aldehídos, las cetonas experimentan un proceso de condensación entre sus moléculas.

metodos de obtencion de acidos carboxilicos

Las síntesis industriales de los ácidos carboxílicos difieren generalmente de las usadas a pequeña escala (en el laboratorio) porque requieren equipamiento especializado.

Oxidación de aldehídos con aire, utilizando catalizadores de cobalto y manganeso. Los aldehídos necesarios son obtenidos fácilmente a partir de alquenos por hidroformilación.
Oxidación de hidrocarburos usando aire. Para los alcanos más simples, el método no es selectivo. Los compuestos alílicos y bencílicos sufren oxidaciones más selectivas. Los grupos alquilo en un anillo bencénico se oxidan hasta el grupo carboxilo (-COOH), sin importar la longitud previa de la cadena. La formación de ácido benzoico a partir del tolueno, de ácido tereftálico a partir del p-xileno, y de ácido ftálico a partir del o-xileno, son algunas conversiones ilustrativas a gran escala. El ácido acrílico se genera a partir del propeno.1
Deshidrogenación de alcoholes, catalizada por bases.
La carbonilación es el método más versátil cuando va acompañado a la adición de agua. Este método es efectivo para alquenos que generan carbocationes secundarios y terciarios, por ejemplo, de isobutileno a ácido piválico. En la reacción de Koch, la adición de agua y monóxido de carbono (CO) a alquenos está catalizada por ácidos fuertes. El ácido acético y el ácido fórmico son producidos por la carbonilación del metanol, llevada a cabo con yodo y alcóxido, quienes actúan como promotores, y frecuentemente con altas presiones de monóxido de carbono, generalmente involucrando varios pasos hidrolíticos adicionales, en el proceso Monsanto y el proceso Cativa. Las hidrocarboxilaciones involucran la adición simultánea de agua y CO. Tales reacciones son llamadas algunas veces como "Química de Reppe":
HCCH + CO + H2O → CH2=CHCO2H

Algunos ácidos carboxílicos de cadena larga son obtenidos por la hidrólisis de los triglicéridos obtenidos de aceites y grasas de plantas y animales. Estos métodos están relacionados con la la elaboración del jabón.

metodos de obtencion de aldehidos

a) Oxidación de alcoholes

La oxidación de alcoholes primarios produce en una primera etapa, aldehídos; mientras que la oxidación de alcoholes secundarios conduce a cetonas.

Las cetonas son resistentes a la oxidación posterior, por lo que pueden aislarse sin necesidad de tomar precauciones especiales. En cambio, los aldehídos se oxidan fácilmente a los ácidos carboxí1icos correspondientes. Para evitar esta oxidación es necesario separar el aldehído de la mezcla reaccionante a medida que se va formando, lo que se consigue por destilación, aprovechando la mayor volatilidad de los aldehídos inferiores respecto a los correspondientes alcoholes. Así se obtiene, por ejemplo, el propanal:

 CH3—CH2—CH2OH Na 2 Cr 2 O 7? + H 2 SO 4?
60–70 ºC CH3—CH2—CHO

1-propanol propanal

b) Hidratación de alquinos

En presencia de sulfato mercúrico y ácido sulfúrico diluido, como catalizadores, se adiciona una molécula de agua al triple enlace de un alquino, con lo que se forma primero un enol que, al ser inestable, se isomeriza por reagrupamiento en un compuesto carbonílico. Únicamente cuando se utiliza acetileno como producto de partida se obtiene acetaldehído, según la reacción:

HCCH + H2O H 2 SO 4

Hg SO 4? CH2=CHOH CH3—CHO

acetileno etenol etanal (acetaldehído)

Este es el procedimiento industrial más utilizado en la actualidad para la fabricación de acetaldehído, que es la materia prima de un gran número de importantes industrias orgánicas. Cuando se utilizan acetilenos alquilsustituidos el producto final es una cetona.

c) Ozonólisis de alquenos

La ozonólisis de alquenos da lugar a aldehídos o cetonas, según que el carbono olefínico tenga uno o dos sustituyentes hidrocarbonados. Esta reacción no suele utilizarse con fines preparativos, sino más bien en la determinación de estructuras para localizar la posición de los dobles enlaces.

2.º Métodos de obtención de aldehídos

a) Reducción de cloruros de acilo

La reducción directa de ácidos carboxílicos a aldehídos no es fácil de realizar, porque los ácidos se reducen con gran dificultad. Por ello, el procedimiento utilizado es convertir primero el ácido en su cloruro (cloruro de acilo) que se reduce fácilmente a aldehído:

Para impedir la posterior reducción del aldehído a alcohol se ha ideado el empleo de un catalizador de paladio envenenado (es decir, desactivado) con azufre.

b) Hidrólisis de dihalogenuros geminales

Mediante la hidrólisis de dihalogenuros geminales (los dos átomos de halógeno están en el mismo carbono) pueden obtenerse aldehídos y cetonas, en general, aunque sólo tiene interés para la preparación de aldehídos aromáticos, concretamente de benzaldehído, por la facilidad con que se hidrolizan los dihalogenometilarenos. Así, cuando se clora fotoquímicamente tolueno, Ar—CH3, se forma ,-diclorotolueno, Ar CH Cl 2?(cloruro de bencilideno), que se hidroliza fácilmente para dar benzaldehído.